(505) 421-7442

Electrochemical Gradients, Plant Metabolism, and Light Quality

Electrochemical Gradients, Plant Metabolism, and Light Quality

In the realm of greenhouse cultivation, understanding the intricate processes governing plant metabolism is not just a matter of scientific curiosity; it is a pivotal factor that can significantly impact crop yield and quality.If you ask a grower to describe photosynthesis, they might tell you it’s how plants use sunlight to grow. But how the sunlight energy is transformed into chemical energy is a mechanism that fewer can explain. This article describes the role of electrochemical gradients in photosynthesis, including electron transport and carbon fixation, as well as the impact of light quality on electron transport.

Beyond the familiar concept of photosynthesis lies a complex interplay of electrochemical gradients (EG), specifically proton motive force, that orchestrates crucial biochemical reactions within plant cells. This article delves into the fascinating world of electrochemical gradients, unraveling their role in photosynthetic electron transport chains (PETC), the generation of ATP through proton motive force, and their influence on the activation of enzymes crucial for carbon fixation. As greenhouse growers aim to optimize conditions for plant growth, a comprehensive understanding of these processes becomes paramount. Furthermore, this article explores the correlation between light quality and electron transport rate, shedding light on how manipulating the spectral composition of light can be a strategic tool for enhancing photosynthetic efficiency. By examining the impact of light quality on electron transport chains, this discussion equips greenhouse cultivators with insights into maximizing crop productivity through informed adjustments in lighting strategies.

Electrochemical Gradients, Plant Metabolism, and Light Quality
Figure 1. An electrochemical gradient generated by hydrogen cations.

Electrochemical Gradients

An electrochemical gradient (EG) occurs when a chemical species, usually an ion, exists on both sides of a membrane (a permeable boundary in an organism) in different concentrations and charges (Figure 1). If possible, ions will move from an area of higher concentration to lower concentration through passive diffusion. They also carry an electric charge, so their movement across membranes creates a transmembrane electrical potential. This results in a gradient that is not just chemical, but electrochemical. Simply put, when an EG exists, the exterior and interior of a plant cell hold different electrical potentials, forming a transmembrane potential, and changing the energy required to move across the membrane. 

Electrochemical Gradients, Plant Metabolism, and Light Quality
Figure 2. Inside of chloroplast inner membrane is the stroma, which contains lumen inside of thylakoids.

Photosynthetic Electron Transport Chains

Chlorophyll is present in thylakoid membranes which are compartments inside chloroplasts (Figure 2). Chlorophyll absorbs energy from sunlight and is involved in forming energy storage molecules (ATP and NADPH) in the light reactions of photosynthesis. The EG that drives photosynthesis spans across these thylakoid membranes and is modulated by photosynthetic electron transport chains (PETCs). Electron transport chains (ETCs) consist of membrane-embedded proteins that easily accept or donate electrons. In photosystem II, energy received as light is transferred to a water molecule: the water molecule splits, yielding hydrogen ions, molecular oxygen, and a free electron to travel on the PETCs. The electron transport rate on the PETC is affected by light quality, described in the final section of this article. As the PETC moves electrons in a specific direction across the thylakoid membrane, the electrical charges of the thylakoid interior (lumen) and exterior (stroma) shift. To balance this shift, protons (in the form of hydrogen ions) are pumped from the stroma into the lumen by the PETC molecules. In this manner, the PETC generates and maintains an electrically-charged gradient across the thylakoid membrane, balanced by hydrogen protons and free electrons (Fig. 3). 

Electrochemical Gradients, Plant Metabolism, and Light Quality
Figure 3. Schematic diagram of electron/proton movement by ETC.

Proton Motive Force

When a plant receives light, electron/proton movement by the PETC results in a greater proton concentration in the lumen than in the stroma, generating an EG. Proton motive force (PMF) is another name for EGs of protons. This PMF allows for another protein embedded in the thylakoid membrane, adenosine triphosphate synthase (ATP, ATPase), to produce chemical energy in the form of ATP. As the ETC shuttles more hydrogen protons into the lumen, the protons naturally want to diffuse back towards their lower concentration. As they do, their movement physically rotates ATPase, converting potential energy into kinetic energy, and combining adenosine diphosphate with inorganic phosphorus, yielding ATP (Figure 4). ATP is used for immediate energy needs or is turned into glucose for longer term storage.

Electrochemical Gradients, Plant Metabolism, and Light Quality
Figure 4. ATPase exploits the transmembrane movement of protons to produce ATP.

This proton movement not only facilitates ATP production, but also changes pH. When the plant receives light, the PETC moves protons into the lumen, making the lumen environment more acidic. To mitigate the electric potential across the thylakoid membrane, magnesium cations diffuse across the membrane from the lumen into the stroma. This affects the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), an enzyme in the stroma that is responsible for carbon fixation. RuBisCO exists in a deactivated and activated state; when activated, it acts as a catalyst. The increase in pH and magnesium, resulting from hydrogen efflux and magnesium influx, creates a more preferrable environment for RuBisCO activation. In this manner, the PETC not only regulates ATP synthesis, but also plays a role in carbon fixation. 

Respiratory ETCs

Photosynthesis is not the only metabolic process driven by proton motive force. Proton gradients are also found in mitochondria, which break down glucose in the process of respiration. In contrast with the PETC, the respiratory electron transport chain (RETC) and ATPase are embedded in the inner mitochondrial membrane. The RETC does not receive free electrons from hydrolysis, but rather from nicotinamide/flavin adenine dinucleotides (NADH/FADH2) (Figure 5). The RETC shuttles protons from the mitochondrial matrix into the intermembrane space to compensate for electron movement. The result is carbohydrates produced through photosynthesis can later be broken down for energy as needed by the plant.

Electrochemical Gradients, Plant Metabolism, and Light Quality
Figure 5. Schematic diagram of mitochondrial respiratory ETC.

Light Quality and Electron Transport Rate

Light quality refers to spectral wavelength composition: for example, an LED fixture might emit a light quality of 80% red (600-700 nm), 20% blue (400-500 nm). Plants demonstrate growth responses to light qualities in the range of plant biologically active radiation (BAR, 280-750 nm). BAR encompasses radiation that is ultraviolet (UV, 280-400 nm), photosynthetically active (PAR, 400-700 nm), and far-red (FR, 700-750 nm). PAR contributes directly to photosynthesis and is divided into wavelength ranges corresponding to visible colors: blue, green, and red (400-500, 500-600, 600-700 nm, respectively).

These three colors exhibit different quantum yields (QY), which is the amount of CO2 or O2 evolved per unit of light received. Red light provides the greatest quantum yield of all PAR colors and is considered the most photosynthetically efficient. Red light is immediately directed to chloroplasts for photosynthetic processing; meanwhile, higher-energy PAR wavelengths (i.e., blue) are processed by accessory pigments (including carotenoids) to lose some energy before that energy is transferred to chloroplasts. High QY of red light has led to the development of photoconversion technologies that convert higher-energy BAR to red wavelengths (i.e., UV and blue to red). As a result, plant growth rates and yields increase. 

Light quality changes QY by affecting photochemical efficiency (PE) and electron transport rate (ETR) on the PETC, amongst other variables. PE describes the amount of PAR that is photosynthesized versus dissipated as heat, and is optimized when photosystems II and I (PSII, PSI) excitation states are balanced (Figure 6). However, the photosystems have different peak absorption wavelengths, meaning the incident light quality impacts how much they are balanced. Shorter PAR wavelengths (400-670 nm) typically excite PSII, meanwhile FR light (700-800 nm) preferentially excites PSI. When photosystem functioning is balanced, ETR is optimized, leading to an increased photosynthetic rate. In this manner, studying light quality effects on plant growth should not only consider wavelength intensities separately, but also the ratios of wavelengths (e.g., R:FR).

Electrochemical Gradients, Plant Metabolism, and Light Quality
Fig. 6 Electrons move from PSII to PSI on the electron transport chain.

Electron transport chains not only move electrons, but also hydrogen protons that establish an electrochemical gradient necessary for photosynthesis and respiration. The proton electrochemical gradient generates proton motive force and regulates pH, facilitating ATP generation and RuBisCO activation. Light quality changes the rate of electron transport on ETCs by affecting PSII and PSI activity. 

In conclusion, this exploration into the intricate relationship between electrochemical gradients, plant metabolism, and light quality provides greenhouse growers with a profound understanding of the underlying mechanisms that govern photosynthesis. The electrochemical gradients, specifically proton motive force, play a central role in orchestrating vital biochemical reactions within plant cells that influence ATP generation and carbon fixation. The article sheds light on the connection between light quality and electron transport rate, revealing how manipulating the spectral composition of light can be a strategic tool for optimizing photosynthetic efficiency. As growers strive to enhance crop yield and quality in greenhouse cultivation, the insights presented here offer valuable knowledge for making informed decisions on adjusting lighting strategies. Technologies that manipulate light quality must therefore consider light wavelength ratios that equally excite both photosystems and increase net photosynthesis. By recognizing the significance of electrochemical gradients and their interaction with light quality, greenhouse cultivators are empowered to maximize the productivity of their crops through thoughtful and targeted environmental management.


Duysens, L. N. M., & Amesz, J. (1962). Function and identification of two photochemical systems in photosynthesis. Biochimica et Biophysica Acta64(2), 243-260.

Evans, J. R. (1987). The dependence of quantum yield on wavelength and growth irradiance. Functional Plant Biology14(1), 69-79.

Evans, J. R., Morgan, P. B., & von Caemmerer, S. (2017). Light quality affects chloroplast electron transport rates estimated from Chl fluorescence measurements. Plant and Cell Physiology58(10), 1652-1660.

Hogewoning, S. W., Wientjes, E., Douwstra, P., Trouwborst, G., Van Ieperen, W., Croce, R., & Harbinson, J. (2012). Photosynthetic quantum yield dynamics: from photosystems to leaves. The plant cell24(5), 1921-1935.

McCree, K. J. (1971). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology9, 191-216.

Myers, J. (1971). Enhancement studies in photosynthesis. Annual Review of Plant Physiology22(1), 289-312.

Su, J. H., & Shen, Y. K. (2005). Influence of State-2 transition on the proton motive force across the thylakoid membrane in spinach chloroplasts. Photosynthesis research85, 235-245.

Zhen, S., & van Iersel, M. W. (2017). Far-red light is needed for efficient photochemistry and photosynthesis. Journal of plant physiology209, 115-122.

Jeff Bates

Jeff Bates is Plant Biologist at UbiQD, Inc. With professional experience in both crop research and production, he has grown edible, ornamental, and medicinal crops using soilless cultivation methods in various controlled environment settings. These experiences have led him to believe that advancing controlled environment technologies is critical to supporting future generations.


Leave A Comment

Your email address will not be published. Required fields are marked *

The Impact of Color on your plants
Hunter McDaniel CEO & Founder UbiGro

Hunter McDaniel, PhD

Founder & CEO

 Hunter earned a Ph.D. in Materials Science and Engineering at the University of Illinois at Urbana-Champaign, before joining Los Alamos National Laboratory in the Chemistry Division. Ultimately the value proposition of UbiGro is about boosting crop yields and quality without the cost or energy impact of lighting. Hunter has more than fifty publications and patents, and more than 2000 total citations, h-index: 20. Hunter fundamentally believes that novel materials underpin every significant technology advancement, and he is focused on leveraging new materials to have a lasting and sustainable impact.

Meet The Team

Damon Hebert, PhD

Director of Agriculture

Damon brings a wide range of experience in agriculture, materials science, spectroscopy, and small business. During his time in Prof. Angus Rockett’s research group at The University of Illinois at Urbana-Champaign (UIUC), Hebert authored a doctoral thesis and multiple papers on the materials science of CIGS semiconductor materials, which is closely related to the materials developed at UbiQD. He also served as a consultant to Nanosolar, a CIGS nanocrystal solar cell manufacturing company. Hebert has industry experience having co-founded Dr. Jolly’s, a leading cultivation and distribution operation in Bend, OR.

Meet The Team

Tania Lafaille

Sales Representative

Tania is a UbiGro Sales Representative, with over 7 years of experience in product sales (specifically berries and avocados) covering all of North America and parts of South America. While in agriculture, Tania has cultivated strong relationships with growers and distributors, granting her a unique insight into both perspectives. That understanding, paired with her fierce dedication to results, drives her fun and fiery commitment to her craft. Tania is based in Gilroy, CA.

Meet The Team

Tyler Veyna

Sales Representative​

Tyler brings 15 years of experience in Greenhouse production and facility management of a wide range of crops in multiple states to the UbiGro team. Based in Salinas, California. “Being a fourth-generation farmer, I look to improve and empower the grower, and with UbiGro, we can do just that.”

Meet The Team

Jim Gideon

Sales Manager

Jim Gideon is an UbiGro Sales Manager, with over 25 years of greenhouse industry sales experience covering all of North America. Previously Jim has worked for Green Tek, Plazit-Polygal, Texel, Cherry Creek, and Nexus. He is based in Montgomery, AL, and Jim believes that “light is everything to the grower.”

Meet The Team

Eric Moody

Director of Sales

Eric Moody is UbiQD’s Director of UbiGro Sales. Eric has more than 6 years of experience in horticulture lighting industry, building relationships with greenhouse growers of all sizes and crops on optimal lighting for their growing operation, and most recently managed a North American sales team for PL Light Systems. Overall, Eric has been in sales leadership positions for more than 13 years. Eric brings with him a great understanding of the market and available technologies for growers, greenhouse facilities, and sales leadership. Reach Eric by phone at 541-490-6421 or by email at [email protected].

Meet The Team

Mike Burrows, PhD

VP of Business Development

Dr. Michael Burrows is UbiQd’s Vice President of Business Development. His educational background includes a Materials Science doctorate from the University of Delaware and an MBA from Duke University Fuqua School of Business. His career has specialized in the commercialization of novel electronic materials in venture-run programs for different industries including solar, biosensors, and the automotive industry. In both start-up and corporate environments, he has extensive experience in global market development, foraging supply chain partnerships, productization, and brand building. He is currently leading UbiQD’s partnership efforts in luminescent greenhouse technology, smart windows, and security ventures.

Meet The Team

Matt Bergern, PhD

Cheif Product Officer

As Chief Product Officer at UbiQD, Dr. Matt Bergren leads the company’s product development efforts, sales, and product manufacturing, including the company’s first commercial agriculture product, UbiGro. He plays a critical role in continuing the company’s path of technology development and vision of powering product innovations in agriculture, clean energy, and security.

He serves as the principal investigator for UbiQD’s contract with NASA, focused on tailoring the solar spectrum for enhanced crop production for space missions. Dr. Bergren’s leadership experience includes serving on the board of directors for the New Mexico Energy Manufacturing Institute, focused on job creation in New Mexico’s energy, and related manufacturing community.